def calculate_loss_mix2(self, predictions, predictions_class, predictions_encoder, labels, **unused_params):
with tf.name_scope("loss_mix2"):
float_labels = tf.cast(labels, tf.float32)
float_encoders = float_labels
for i in range(FLAGS.encoder_layers):
var_i = np.loadtxt(FLAGS.autoencoder_dir+'autoencoder_layer%d.model' % i)
weight_i = tf.constant(var_i[:-1,:],dtype=tf.float32)
bias_i = tf.reshape(tf.constant(var_i[-1,:],dtype=tf.float32),[-1])
float_encoders = tf.nn.xw_plus_b(float_encoders,weight_i,bias_i)
if i<FLAGS.encoder_layers-1:
float_encoders = tf.nn.relu(float_encoders)
else:
hidden_mean = tf.reduce_mean(float_encoders,axis=1,keep_dims=True)
hidden_std = tf.sqrt(tf.reduce_mean(tf.square(float_encoders-hidden_mean),axis=1,keep_dims=True))
float_encoders = (float_encoders-hidden_mean)/(hidden_std+1e-6)
#float_encoders = tf.nn.sigmoid(float_encoders)
cross_entropy_encoder = 0.1*self.calculate_mseloss(predictions_encoder,float_encoders)
cross_entropy_loss = self.calculate_loss(predictions,labels)
return cross_entropy_encoder+cross_entropy_loss, float_encoders
#return cross_entropy_encoder, float_encoders
评论列表
文章目录