def cal_loss(self):
expand_annotations = tf.expand_dims(
self.annotations, -1, name='annotations/expand_dims')
one_hot_annotations = tf.squeeze(
expand_annotations, axis=[self.channel_axis],
name='annotations/squeeze')
one_hot_annotations = tf.one_hot(
one_hot_annotations, depth=self.conf.class_num,
axis=self.channel_axis, name='annotations/one_hot')
losses = tf.losses.softmax_cross_entropy(
one_hot_annotations, self.predictions, scope='loss/losses')
self.loss_op = tf.reduce_mean(losses, name='loss/loss_op')
self.decoded_predictions = tf.argmax(
self.predictions, self.channel_axis, name='accuracy/decode_pred')
self.dice_accuracy_op, self.sub_dice_list = ops.dice_accuracy(self.decoded_predictions,\
self.annotations,self.conf.class_num)
correct_prediction = tf.equal(
self.annotations, self.decoded_predictions,
name='accuracy/correct_pred')
self.accuracy_op = tf.reduce_mean(
tf.cast(correct_prediction, tf.float32, name='accuracy/cast'),
name='accuracy/accuracy_op')
network.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录