def _double_conv_layer_wrapper(self, input1, input2, out_feature_maps,
filter_length, is_train):
'''Two parallele convolution layers for each channel
using shared weights'''
filter_width = input1.get_shape()[1].value
in_feature_maps = input1.get_shape()[-1].value
# shared weights
W_conv = weight_variable(
[filter_width, filter_length, in_feature_maps, out_feature_maps],
regularizer=tf.contrib.layers.l2_regularizer(self.reg_fac))
# shared bias
b_conv = bias_variable([out_feature_maps])
h_conv_t1 = tf.add(conv2d(input1, W_conv), b_conv)
h_conv_b1 = self._batch_norm_wrapper(h_conv_t1, is_train)
h_conv_t2 = tf.add(conv2d(input2, W_conv), b_conv)
h_conv_b2 = self._batch_norm_wrapper(h_conv_t2, is_train)
return tf.nn.relu(h_conv_b1), tf.nn.relu(h_conv_b2)
SENN.py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录