def neural_net(x):
# Hidden fully connected layer with 7 neurons
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden fully connected layer with 7 neurons
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Hidden fully connected layer with 4 neurons
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3 = tf.nn.relu(layer_3)
# Output fully connected layer with a neuron for each class
out_layer = tf.matmul(layer_3, weights['out']) + biases['out']
return out_layer
# Construct model
lab6_runTFMultiANN_spiraldata.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录