def make_feature_columns():
"""Retrieve the feature columns required for training."""
feature_columns = (make_query_feature_columns()
| make_candidate_feature_columns())
# Add feature column for the label.
target_rating_real_column = tf.contrib.layers.real_valued_column(
column_name=LABEL_RATING_SCORE, dtype=tf.float32)
feature_columns.add(target_rating_real_column)
# Ranking candidate movies used only in eval graph to rank candidate movie
# against.
ranking_candidate_movie_ids = (
tf.contrib.layers.sparse_column_with_integerized_feature(
column_name=RANKING_CANDIDATE_MOVIE_IDS,
bucket_size=MOVIE_VOCAB_SIZE))
feature_columns.add(ranking_candidate_movie_ids)
return feature_columns
评论列表
文章目录