word_rnn.py 文件源码

python
阅读 34 收藏 0 点赞 0 评论 0

项目:deep-learning 作者: ljanyst 项目源码 文件源码
def get_optimizer(self, learning_rate = 0.001):
        with tf.name_scope('loss'):
            input_shape = tf.shape(self.inputs)
            ones        = tf.ones([input_shape[0], input_shape[1]])
            loss = tf.contrib.seq2seq.sequence_loss(self.logits, self.targets,
                                                    ones)

        #-----------------------------------------------------------------------
        # Build the optimizer
        #-----------------------------------------------------------------------
        with tf.name_scope('optimizer'):
            optimizer = tf.train.AdamOptimizer(learning_rate)
            gradients = optimizer.compute_gradients(loss)
            capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) \
                                for grad, var in gradients if grad is not None]
            optimizer_op = optimizer.apply_gradients(capped_gradients)

        return optimizer_op, loss
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号