def test(checkpoint_path, test_dir, examples_path, hparams,
num_batches=None):
"""Evaluate the model at a single checkpoint."""
tf.gfile.MakeDirs(test_dir)
_trial_summary(hparams, examples_path, test_dir)
with tf.Graph().as_default():
transcription_data = _get_data(
examples_path, hparams, is_training=False)
unused_loss, losses, labels, predictions, images = model.get_model(
transcription_data, hparams, is_training=False)
metrics_to_values, metrics_to_updates = _get_eval_metrics(
losses, labels, predictions, images, hparams)
metric_values = slim.evaluation.evaluate_once(
checkpoint_path=checkpoint_path,
logdir=test_dir,
num_evals=num_batches or transcription_data.num_batches,
eval_op=metrics_to_updates.values(),
final_op=metrics_to_values.values())
metrics_to_values = dict(zip(metrics_to_values.keys(), metric_values))
for metric in metrics_to_values:
print('%s: %f' % (metric, metrics_to_values[metric]))
评论列表
文章目录