def testCreateSingleclone(self):
g = tf.Graph()
with g.as_default():
tf.set_random_seed(0)
tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
tf_labels = tf.constant(self._labels, dtype=tf.float32)
model_fn = BatchNormClassifier
clone_args = (tf_inputs, tf_labels)
deploy_config = model_deploy.DeploymentConfig(num_clones=1)
self.assertEqual(slim.get_variables(), [])
clones = model_deploy.create_clones(deploy_config, model_fn, clone_args)
clone = clones[0]
self.assertEqual(len(slim.get_variables()), 5)
for v in slim.get_variables():
self.assertDeviceEqual(v.device, 'CPU:0')
self.assertDeviceEqual(v.value().device, 'CPU:0')
self.assertEqual(clone.outputs.op.name,
'BatchNormClassifier/fully_connected/Sigmoid')
self.assertEqual(clone.scope, '')
self.assertDeviceEqual(clone.device, '')
self.assertEqual(len(slim.losses.get_losses()), 1)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
self.assertEqual(len(update_ops), 2)
model_deploy_test.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录