def main():
# Graph
with tf.device('/cpu:0'):
a = tf.Variable(tf.truncated_normal(shape=[2]),dtype=tf.float32)
b = tf.Variable(tf.truncated_normal(shape=[2]),dtype=tf.float32)
c=a+b
target = tf.constant(100.,shape=[2],dtype=tf.float32)
loss = tf.reduce_mean(tf.square(c-target))
opt = tf.train.GradientDescentOptimizer(.0001).minimize(loss)
# Session
sv = tf.train.Supervisor()
sess = sv.prepare_or_wait_for_session()
for i in range(1000):
sess.run(opt)
if i % 10 == 0:
r = sess.run(c)
print(r)
time.sleep(.1)
评论列表
文章目录