def build_input(self):
results = {}
phase_train = self.add_input_var('phase_train', None, 'bool')
results['phase_train'] = phase_train
inp_depth = self.get_option('inp_depth')
orig_x = []
for ii in xrange(self.num_replica):
with tf.name_scope('%s_%d' % ('replica', ii)) as scope:
device = '/gpu:{}'.format(ii)
with tf.device(device):
x_ = self.add_input_var('x_{}'.format(
ii), [None, None, None, inp_depth], 'float')
results['x_{}'.format(ii)] = x_
y_gt_ = self.add_input_var('y_gt_{}'.format(ii), [
None, NUM_CLS], 'float')
results['y_gt_{}'.format(ii)] = y_gt_
orig_x.append(
(x_ + self.sub_models[0].res_net._img_mean) / 255.0)
# self.log.error(x_.device)
# self.log.fatal('')
self.register_var('orig_x', tf.concat(0, orig_x))
return results
resnet_imagenet_model_multi_wrapper.py 文件源码
python
阅读 34
收藏 0
点赞 0
评论 0
评论列表
文章目录