DeepSpeech_RHL_AVSR.py 文件源码

python
阅读 34 收藏 0 点赞 0 评论 0

项目:AVSR-Deep-Speech 作者: pandeydivesh15 项目源码 文件源码
def create_optimizer():
    optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate,
                                       beta1=FLAGS.beta1,
                                       beta2=FLAGS.beta2,
                                       epsilon=FLAGS.epsilon)
    return optimizer


# Towers
# ======

# In order to properly make use of multiple GPU's, one must introduce new abstractions,
# not present when using a single GPU, that facilitate the multi-GPU use case.
# In particular, one must introduce a means to isolate the inference and gradient
# calculations on the various GPU's.
# The abstraction we intoduce for this purpose is called a 'tower'.
# A tower is specified by two properties:
# * **Scope** - A scope, as provided by `tf.name_scope()`,
# is a means to isolate the operations within a tower.
# For example, all operations within 'tower 0' could have their name prefixed with `tower_0/`.
# * **Device** - A hardware device, as provided by `tf.device()`,
# on which all operations within the tower execute.
# For example, all operations of 'tower 0' could execute on the first GPU `tf.device('/gpu:0')`.
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号