def build_model1(self):
#Constructing the Gan
#Get the variables
self.fake_images = self.generate(self.z, self.y, weights=self.weights1, biases=self.biases1)
# the loss of dis network
self.D_pro = self.discriminate(self.images, self.y, self.weights2, self.biases2, False)
self.G_pro = self.discriminate(self.fake_images, self.y, self.weights2, self.biases2, True)
self.G_fake_loss = -tf.reduce_mean(tf.log(self.G_pro + TINY))
self.loss = -tf.reduce_mean(tf.log(1. - self.G_pro + TINY) + tf.log(self.D_pro + TINY))
self.log_vars.append(("generator_loss", self.G_fake_loss))
self.log_vars.append(("discriminator_loss", self.loss))
t_vars = tf.trainable_variables()
self.d_vars = [var for var in t_vars if 'dis' in var.name]
self.g_vars = [var for var in t_vars if 'gen' in var.name]
self.saver = tf.train.Saver(self.g_vars)
for k, v in self.log_vars:
tf.summary.scalar(k, v)
#Training the Encode_z
评论列表
文章目录