def run_graph(self):
logging.debug("computeGraph")
with tf.Session(graph=self.graph) as sess:
tf.initialize_all_variables().run()
logging.debug("Initialized")
for step in range(1, self.num_steps + 1):
summary, _ , train_loss, train_metrics= sess.run([self.merged, self.train_step, self.loss, self.accuracy], feed_dict=self.feed_dict("train"))
self.train_writer.add_summary(summary, step)
if step % 100 == 0:
summary, validation_loss, validation_metrics = sess.run([self.merged, self.loss, self.accuracy], feed_dict=self.feed_dict("validation"))
self.test_writer.add_summary(summary, step)
# loss_train = sess.run(self.loss, feed_dict=self.feed_dict("validation_wholetrain"))
logging.info("Step {}/{}, train/test: {:.3f}/{:.3f}, train/test loss: {:.3f}/{:.3f}".format(step, self.num_steps, train_metrics, validation_metrics,\
train_loss, validation_loss))
if self.get_stop_decisision(step, -validation_metrics):
logging.info("stop here due to early stopping")
return
# y_pred = sess.run(self.y_pred, feed_dict=self.feed_dict("validation"))
# logging.info("validation mape :{:.3f}".format(mean_absolute_percentage_error(self.y_validation.reshape(-1), y_pred.reshape(-1))))
return
didineuralmodel.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录