def test_rpn():
vgg = Vgg16()
rpn = RpnNet()
image_tensor = tf.placeholder(tf.float32)
with tf.Session() as sess:
vgg.build(image_tensor)
rpn.build(vgg.conv5_3, None)
init = tf.initialize_all_variables()
sess.run(init)
load_feature_layer_params('/Users/dtong/code/data/tf-image-interpreter/pretrain/vgg16_weights.npz', sess)
roidb = RoiDb('val.txt', 2007)
batch_gen = BatchGenerator(roidb)
for i in range(10):
image, scale, bboxes = batch_gen.next_batch()
feature_shape = tf.shape(rpn.rpn_cls_score_reshape)
print_feat_shape = tf.Print(feature_shape, [feature_shape], summarize=5)
sess.run(print_feat_shape, feed_dict={image_tensor: image})
# print(sess.run(vgg.conv5_3, feed_dict={image_tensor: image}))
评论列表
文章目录