def cal_loss(self):
one_hot_labels = tf.one_hot(
self.labels, depth=self.conf.class_num,
axis=self.channel_axis, name='labels/one_hot')
losses = tf.losses.softmax_cross_entropy(
one_hot_labels, self.predictions, scope='loss/losses')
self.loss_op = tf.reduce_mean(losses, name='loss/loss_op')
self.decoded_preds = tf.argmax(
self.predictions, self.channel_axis, name='accuracy/decode_pred')
correct_prediction = tf.equal(
self.labels, self.decoded_preds,
name='accuracy/correct_pred')
self.accuracy_op = tf.reduce_mean(
tf.cast(correct_prediction, tf.float32, name='accuracy/cast'),
name='accuracy/accuracy_op')
# weights = tf.cast(
# tf.greater(self.decoded_preds, 0, name='m_iou/greater'),
# tf.int32, name='m_iou/weights')
weights = tf.cast(
tf.less(self.labels, self.conf.channel, name='m_iou/greater'),
tf.int64, name='m_iou/weights')
labels = tf.multiply(self.labels, weights, name='m_iou/mul')
self.m_iou, self.miou_op = tf.metrics.mean_iou(
self.labels, self.decoded_preds, self.conf.class_num,
weights, name='m_iou/m_ious')
评论列表
文章目录