def _build(self):
# ?????????? --- build
self._lin = photinia.Linear('LINEAR', self._input_size, self._num_classes).build()
# ????
x = tf.placeholder(dtype=photinia.D_TYPE, shape=[None, self._input_size])
y_ = tf.placeholder(dtype=photinia.D_TYPE, shape=[None, self._num_classes])
# ?????? --- setup
y = self._lin.setup(x)
# ??????? softmax?????
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
# accuracy??
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, photinia.D_TYPE))
# ????????slot
self._add_slot(
'train',
outputs=loss,
inputs=(x, y_),
updates=tf.train.GradientDescentOptimizer(0.5).minimize(loss)
)
self._add_slot(
'predict',
outputs=accuracy,
inputs=(x, y_)
)
评论列表
文章目录