def get_genre():
try:
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
# Load the saved meta graph and restore variables
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
albums = request.args.get('albums')
x_raw = albums.split(',')
all_predictions = []
x_test = np.array(list(vocab_processor.transform(x_raw)))
# Get the placeholders from the graph by name
input_x = graph.get_operation_by_name("input_x").outputs[0]
dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
# Tensors we want to evaluate
predictions = graph.get_operation_by_name("output/predictions").outputs[0]
# Generate batches for one epoch
batches = data_loader.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)
for x_test_batch in batches:
batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0})
all_predictions = np.concatenate([all_predictions, batch_predictions])
return jsonify({'results': map(lambda x: data_loader.genre_ids[int(x)], all_predictions)})
except Exception as e:
print e
评论列表
文章目录