def __init__(self, config):
self.layers = {}
self.weights = {}
self.biases = {}
self.losses = {}
self.regular_losses = {}
self.trainable = {}
self.summaries = {}
# set parameters
self.lr_rates = {}
for key, val in config.lr_rates.iteritems():
self.lr_rates[key] = tf.get_variable('lr_rates/'+key, initializer=tf.constant(val), dtype=tf.float32)
self.momentum = tf.get_variable('momentum', initializer=tf.constant(config.momentum), dtype=tf.float32)
self.weight_decay = tf.get_variable('weight_decay', initializer=tf.constant(config.weight_decay), dtype=tf.float32)
self.lr_rate = tf.get_variable('lr_rate', initializer=tf.constant(config.lr_rate), dtype=tf.float32)
评论列表
文章目录