def _ZF_up_block(self,net, down, ksizes,filters,dropout,keep_prob,name,activations,strides,batchnorm):
channels = net.get_shape().as_list()[-1]
with tf.variable_scope(name.split('/')[-1]):
net = self._deconv2D(net, ksize=2, in_channel=channels,
out_channel=channels, strides=[1,2,2,1], layer_name="%s/deconv"%(name),
padding='SAME', activation=None, L2 = 1)
try:
net = tf.concat([net,down],axis=3)
except:
net = tf.concat(3, [net,down])
net = self.conv_block(net, "%s/conv_block"%(name), ksizes=ksizes, filters=filters,
activations=activations, strides=strides, batchnorm=batchnorm)
if dropout:
net = tf.nn.dropout(net, keep_prob = self.keep_prob)
return net
评论列表
文章目录