def deconv2d(input_, output_shape,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="deconv2d", with_w=False):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
tf_output_shape=tf.stack(output_shape)
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=tf_output_shape,
strides=[1, d_h, d_w, 1])
biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
#deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), tf_output_shape)
if with_w:
return deconv, w, biases
else:
return deconv
评论列表
文章目录