def test_fractalnet_smoketest(self):
input_placeholder = tf.placeholder(tf.float32, [None, 3])
output_placeholder = tf.placeholder(tf.float32, [None, 3])
fractal_net = tdl.FractalNet(3, 2, lambda name: tdl.FC(3, name=name))
result = fractal_net(input_placeholder)
loss = tf.nn.l2_loss(result - output_placeholder)
optr = tf.train.GradientDescentOptimizer(0.001)
trainer = optr.minimize(loss)
dataset = np.random.standard_normal([10, 3])
answers = np.random.standard_normal([10, 3])
feed_dict = {input_placeholder: dataset, output_placeholder: answers}
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
old_loss = loss.eval(feed_dict)
for unused_iteration in range(20):
sess.run([trainer], feed_dict)
new_loss = loss.eval(feed_dict)
self.assertLess(new_loss, old_loss)
评论列表
文章目录