frame_level_models.py 文件源码

python
阅读 30 收藏 0 点赞 0 评论 0

项目:youtube-8m 作者: wangheda 项目源码 文件源码
def sub_model(self, model_input, vocab_size, num_mixtures=None,
                  l2_penalty=1e-8, sub_scope="", distill_labels=None,**unused_params):
        num_mixtures = num_mixtures or FLAGS.moe_num_mixtures
        class_size = 256
        if distill_labels is not None:
            class_input = slim.fully_connected(
                distill_labels,
                class_size,
                activation_fn=tf.nn.relu,
                weights_regularizer=slim.l2_regularizer(l2_penalty),
                scope="class_inputs")
            class_input = tf.nn.l2_normalize(class_input, dim=1)
            model_input = tf.concat((model_input, class_input),axis=1)
        gate_activations = slim.fully_connected(
            model_input,
            vocab_size * (num_mixtures + 1),
            activation_fn=None,
            biases_initializer=None,
            weights_regularizer=slim.l2_regularizer(l2_penalty),
            scope="gates-"+sub_scope)
        expert_activations = slim.fully_connected(
            model_input,
            vocab_size * num_mixtures,
            activation_fn=None,
            weights_regularizer=slim.l2_regularizer(l2_penalty),
            scope="experts-"+sub_scope)

        gating_distribution = tf.nn.softmax(tf.reshape(
            gate_activations,
            [-1, num_mixtures + 1]))  # (Batch * #Labels) x (num_mixtures + 1)
        expert_distribution = tf.nn.sigmoid(tf.reshape(
            expert_activations,
            [-1, num_mixtures]))  # (Batch * #Labels) x num_mixtures

        final_probabilities_by_class_and_batch = tf.reduce_sum(
            gating_distribution[:, :num_mixtures] * expert_distribution, 1)
        final_probabilities = tf.reshape(final_probabilities_by_class_and_batch,
                                         [-1, vocab_size])
        return final_probabilities
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号