def calculate_loss(self, predictions, labels, **unused_params):
with tf.name_scope("loss_frames"):
epsilon = 10e-6
float_labels = tf.cast(labels, tf.float32)
cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
1 - float_labels) * tf.log(1 - predictions + epsilon)
return tf.reduce_sum(cross_entropy_loss, 2)
评论列表
文章目录