def step_with_training(self, training=None):
def step(inputs, states):
input_shape = K.int_shape(inputs)
y_tm1 = self.layer.preprocess_input(
K.expand_dims(states[0], axis=1),
training
)
y_tm1 = K.reshape(y_tm1, (-1, input_shape[-1]))
inputs_sum = tf.reduce_sum(inputs)
def inputs_f(): return inputs
def output_f(): return y_tm1
current_inputs = tf.case(
[(tf.equal(inputs_sum, 0.0), output_f)],
default=inputs_f
)
return self.layer.step(
current_inputs,
states
)
return step
评论列表
文章目录