def calculate_loss(self, predictions, labels, **unused_params):
bound = FLAGS.softmax_bound
vocab_size_1 = bound
with tf.name_scope("loss_softmax"):
epsilon = 10e-8
float_labels = tf.cast(labels, tf.float32)
labels_1 = float_labels[:,:vocab_size_1]
predictions_1 = predictions[:,:vocab_size_1]
cross_entropy_loss = CrossEntropyLoss().calculate_loss(predictions_1,labels_1)
lables_2 = float_labels[:,vocab_size_1:]
predictions_2 = predictions[:,vocab_size_1:]
# l1 normalization (labels are no less than 0)
label_rowsum = tf.maximum(
tf.reduce_sum(lables_2, 1, keep_dims=True),
epsilon)
label_append = 1.0-tf.reduce_max(lables_2, 1, keep_dims=True)
norm_float_labels = tf.concat((tf.div(lables_2, label_rowsum),label_append),axis=1)
predictions_append = 1.0-tf.reduce_sum(predictions_2, 1, keep_dims=True)
softmax_outputs = tf.concat((predictions_2,predictions_append),axis=1)
softmax_loss = norm_float_labels * tf.log(softmax_outputs + epsilon) + (
1 - norm_float_labels) * tf.log(1 - softmax_outputs + epsilon)
softmax_loss = tf.negative(tf.reduce_sum(softmax_loss, 1))
return tf.reduce_mean(softmax_loss) + cross_entropy_loss
评论列表
文章目录