def trainable_initial_state(self, batch_size):
"""
Create a trainable initial state for the SkipLSTMCell
:param batch_size: number of samples per batch
:return: SkipLSTMStateTuple
"""
with tf.variable_scope('initial_c'):
initial_c = rnn_ops.create_initial_state(batch_size, self._num_units)
with tf.variable_scope('initial_h'):
initial_h = rnn_ops.create_initial_state(batch_size, self._num_units)
with tf.variable_scope('initial_update_prob'):
initial_update_prob = rnn_ops.create_initial_state(batch_size, 1, trainable=False,
initializer=tf.ones_initializer())
with tf.variable_scope('initial_cum_update_prob'):
initial_cum_update_prob = rnn_ops.create_initial_state(batch_size, 1, trainable=False,
initializer=tf.zeros_initializer())
return SkipLSTMStateTuple(initial_c, initial_h, initial_update_prob, initial_cum_update_prob)
skip_rnn_cells.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录