def get_topics(self, sess, topn):
topics = []
entropy = []
tw_dist = sess.run(tf.nn.softmax(tf.matmul(self.topic_output_embedding, self.tm_softmax_w) + self.tm_softmax_b))
for ti in xrange(self.config.topic_number):
best = matutils.argsort(tw_dist[ti], topn=topn, reverse=True)
topics.append(best)
entropy.append(scipy.stats.entropy(tw_dist[ti]))
return topics, entropy
#get top topics and words given a doc
tdlm_model.py 文件源码
python
阅读 33
收藏 0
点赞 0
评论 0
评论列表
文章目录