def gru_single_step_word_level(self, Xt, h_t_minus_1):
"""
single step of gru for word level
:param Xt: Xt:[batch_size*num_sentences,embed_size]
:param h_t_minus_1:[batch_size*num_sentences,embed_size]
:return:
"""
# update gate: decides how much past information is kept and how much new information is added.
z_t = tf.nn.sigmoid(tf.matmul(Xt, self.W_z) + tf.matmul(h_t_minus_1,
self.U_z) + self.b_z) # z_t:[batch_size*num_sentences,self.hidden_size]
# reset gate: controls how much the past state contributes to the candidate state.
r_t = tf.nn.sigmoid(tf.matmul(Xt, self.W_r) + tf.matmul(h_t_minus_1,
self.U_r) + self.b_r) # r_t:[batch_size*num_sentences,self.hidden_size]
# candiate state h_t~
h_t_candiate = tf.nn.tanh(tf.matmul(Xt, self.W_h) +r_t * (tf.matmul(h_t_minus_1, self.U_h)) + self.b_h) # h_t_candiate:[batch_size*num_sentences,self.hidden_size]
# new state: a linear combine of pervious hidden state and the current new state h_t~
h_t = (1 - z_t) * h_t_minus_1 + z_t * h_t_candiate # h_t:[batch_size*num_sentences,hidden_size]
return h_t
p1_HierarchicalAttention_model_transformer.py 文件源码
python
阅读 55
收藏 0
点赞 0
评论 0
评论列表
文章目录