def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
#mat_shape=tf.stack([tf.shape(input_)[1],output_size])
mat_shape=[shape[1],output_size]
with tf.variable_scope(scope or "Linear"):
#matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
matrix = tf.get_variable("Matrix", mat_shape, tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias
#minibatch method that improves on openai
#because it doesn't fix batchsize:
#TODO: recheck when not sleepy
评论列表
文章目录