def makeDNN(hidden_layer):
# input from X
prevLayer = X
# make layers
for i in range(hidden_layer):
if i==0:
newWeight = tf.get_variable("W0%d" % i, shape=[features, wide], initializer=tf.contrib.layers.xavier_initializer())
else:
newWeight = tf.get_variable("W0%d" % i, shape=[wide, wide], initializer=tf.contrib.layers.xavier_initializer())
newBias = tf.Variable(tf.random_normal([wide]))
newLayer = tf.nn.relu(tf.matmul(prevLayer, newWeight) + newBias)
newDropLayer = tf.nn.dropout(newLayer, dropout_rate)
prevLayer = newDropLayer
# make output layers
Wo = tf.get_variable("Wo", shape=[wide, labels], initializer=tf.contrib.layers.xavier_initializer())
bo = tf.Variable(tf.random_normal([labels]))
return tf.matmul(prevLayer, Wo) + bo
# tf Graph Input
评论列表
文章目录