def build_model(self):
Z = tf.placeholder(tf.float32, [self.batch_size, self.dim_z])
Y = tf.placeholder(tf.float32, [self.batch_size, self.dim_y])
image_real = tf.placeholder(tf.float32, [self.batch_size]+self.image_shape)
h4 = self.generate(Z,Y)
#image_gen comes from sigmoid output of generator
image_gen = tf.nn.sigmoid(h4)
raw_real2 = self.discriminate(image_real, Y)
#p_real = tf.nn.sigmoid(raw_real)
p_real=tf.reduce_mean(raw_real2)
raw_gen2 = self.discriminate(image_gen, Y)
#p_gen = tf.nn.sigmoid(raw_gen)
p_gen = tf.reduce_mean(raw_gen2)
discrim_cost = tf.reduce_sum(raw_real2) - tf.reduce_sum(raw_gen2)
gen_cost = -tf.reduce_mean(raw_gen2)
return Z, Y, image_real, discrim_cost, gen_cost, p_real, p_gen
评论列表
文章目录