def build_model2(self):
self.weights3, self.biases3 = self.get_en_z_variables()
#training Ez
self.fake_images = self.generate(self.z, self.y, weights=self.weights1, biases=self.biases1)
self.e_z= self.encode_z(self.fake_images, weights=self.weights3, biases=self.biases3)
self.loss_z = tf.reduce_mean(tf.square(tf.contrib.layers.flatten(self.e_z - self.z)))
t_vars = tf.trainable_variables()
self.g_vars = [var for var in t_vars if 'gen' in var.name]
self.enz_vars = [var for var in t_vars if 'enz' in var.name]
print len(self.g_vars)
print len(self.enz_vars)
self.saver = tf.train.Saver(self.g_vars)
self.saver_z = tf.train.Saver(self.g_vars + self.enz_vars)
#Training the Encode_y
评论列表
文章目录