def calculate_loss(self, predictions, labels, **unused_params):
with tf.name_scope("loss_xent"):
epsilon = 10e-6
vocab_size = predictions.get_shape().as_list()[1]
float_labels = tf.cast(labels, tf.float32)
cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
1 - float_labels) * tf.log(1 - predictions + epsilon)
cross_entropy_loss = tf.negative(cross_entropy_loss)
neg_labels = 1 - float_labels
predictions_pos = predictions*float_labels+10*neg_labels
predictions_minpos = tf.reduce_min(predictions_pos,axis=1,keep_dims=True)
predictions_neg = predictions*neg_labels-10*float_labels
predictions_maxneg = tf.reduce_max(predictions_neg,axis=1,keep_dims=True)
mask_1 = tf.cast(tf.greater_equal(predictions_neg, predictions_minpos),dtype=tf.float32)
mask_2 = tf.cast(tf.less_equal(predictions_pos, predictions_maxneg),dtype=tf.float32)
cross_entropy_loss = cross_entropy_loss*(mask_1+mask_2)*10 + cross_entropy_loss
return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
评论列表
文章目录