def init():
#1. assign value to fields
vocab_size=1000
d_model = 512
d_k = 64
d_v = 64
sequence_length = 5*10
h = 8
batch_size=4*32
initializer = tf.random_normal_initializer(stddev=0.1)
# 2.set values for Q,K,V
vocab_size=1000
embed_size=d_model
Embedding = tf.get_variable("Embedding_E", shape=[vocab_size, embed_size],initializer=initializer)
input_x = tf.placeholder(tf.int32, [batch_size,sequence_length], name="input_x") #[4,10]
print("input_x:",input_x)
embedded_words = tf.nn.embedding_lookup(Embedding, input_x) #[batch_size*sequence_length,embed_size]
Q = embedded_words # [batch_size*sequence_length,embed_size]
K_s = embedded_words # [batch_size*sequence_length,embed_size]
num_layer=6
mask = get_mask(batch_size, sequence_length)
#3. get class object
encoder_class=Encoder(d_model,d_k,d_v,sequence_length,h,batch_size,num_layer,Q,K_s,mask=mask) #Q,K_s,embedded_words
return encoder_class,Q,K_s
评论列表
文章目录