def predict_from_placeholder(self,activation=None):
self._build()
self._get_summary()
if activation is not None:
self.logit = self._activate(self.logit,activation)
with open(self.flags.pred_path,'w') as f:
pass
count = 0
with tf.Session() as sess:
self.sess = sess
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
if self.flags.log_path and self.flags.visualize is not None:
summary_writer = tf.summary.FileWriter(self.flags.log_path, sess.graph)
for batch in self._batch_gen_test():
x,_,epoch = batch
if self.flags.log_path and self.flags.visualize is not None:
summary,pred = sess.run([self.summ_op,self.logit],feed_dict={self.inputs:x,self.is_training:0})
summary_writer.add_summary(summary, count)
else:
pred = sess.run(self.logit,feed_dict={self.inputs:x,self.is_training:0})
count+=1
if count%self.flags.verbosity == 0:
print_mem_time("Epoch %d Batch %d "%(epoch,count))
self.write_pred(pred)
评论列表
文章目录