def get_solvers(net_name):
# Faster R-CNN Alternating Optimization
n = 'faster_rcnn_alt_opt'
# Solver for each training stage
solvers = [[net_name, n, 'stage1_rpn_solver60k80k.pt'],
[net_name, n, 'stage1_fast_rcnn_solver30k40k.pt'],
[net_name, n, 'stage2_rpn_solver60k80k.pt'],
[net_name, n, 'stage2_fast_rcnn_solver30k40k.pt']]
solvers = [os.path.join(cfg.ROOT_DIR, 'models', *s) for s in solvers]
# Iterations for each training stage
max_iters = [80000, 40000, 80000, 40000]
# max_iters = [100, 100, 100, 100]
# Test prototxt for the RPN
rpn_test_prototxt = os.path.join(
cfg.ROOT_DIR, 'models', net_name, n, 'rpn_test.pt')
return solvers, max_iters, rpn_test_prototxt
# ------------------------------------------------------------------------------
# Pycaffe doesn't reliably free GPU memory when instantiated nets are discarded
# (e.g. "del net" in Python code). To work around this issue, each training
# stage is executed in a separate process using multiprocessing.Process.
# ------------------------------------------------------------------------------
train_faster_rcnn_alt_opt.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录