def sample_model(self, df, seasonal_features, iteration):
"""Simulate observations from the extrapolated generative model.
Parameters
----------
df: Prediction dataframe.
seasonal_features: pd.DataFrame of seasonal features.
iteration: Int sampling iteration to use parameters from.
Returns
-------
Dataframe with trend, seasonality, and yhat, each like df['t'].
"""
trend = self.sample_predictive_trend(df, iteration)
beta = self.params['beta'][iteration]
seasonal = np.matmul(seasonal_features.as_matrix(), beta) * self.y_scale
sigma = self.params['sigma_obs'][iteration]
noise = np.random.normal(0, sigma, df.shape[0]) * self.y_scale
return pd.DataFrame({
'yhat': trend + seasonal + noise,
'trend': trend,
'seasonal': seasonal,
})
评论列表
文章目录