forecaster.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:prophet 作者: facebook 项目源码 文件源码
def sample_model(self, df, seasonal_features, iteration):
        """Simulate observations from the extrapolated generative model.

        Parameters
        ----------
        df: Prediction dataframe.
        seasonal_features: pd.DataFrame of seasonal features.
        iteration: Int sampling iteration to use parameters from.

        Returns
        -------
        Dataframe with trend, seasonality, and yhat, each like df['t'].
        """
        trend = self.sample_predictive_trend(df, iteration)

        beta = self.params['beta'][iteration]
        seasonal = np.matmul(seasonal_features.as_matrix(), beta) * self.y_scale

        sigma = self.params['sigma_obs'][iteration]
        noise = np.random.normal(0, sigma, df.shape[0]) * self.y_scale

        return pd.DataFrame({
            'yhat': trend + seasonal + noise,
            'trend': trend,
            'seasonal': seasonal,
        })
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号