test_timedeltas.py 文件源码

python
阅读 35 收藏 0 点赞 0 评论 0

项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码
def test_ops_ndarray(self):
        td = Timedelta('1 day')

        # timedelta, timedelta
        other = pd.to_timedelta(['1 day']).values
        expected = pd.to_timedelta(['2 days']).values
        self.assert_numpy_array_equal(td + other, expected)
        if LooseVersion(np.__version__) >= '1.8':
            self.assert_numpy_array_equal(other + td, expected)
        self.assertRaises(TypeError, lambda: td + np.array([1]))
        self.assertRaises(TypeError, lambda: np.array([1]) + td)

        expected = pd.to_timedelta(['0 days']).values
        self.assert_numpy_array_equal(td - other, expected)
        if LooseVersion(np.__version__) >= '1.8':
            self.assert_numpy_array_equal(-other + td, expected)
        self.assertRaises(TypeError, lambda: td - np.array([1]))
        self.assertRaises(TypeError, lambda: np.array([1]) - td)

        expected = pd.to_timedelta(['2 days']).values
        self.assert_numpy_array_equal(td * np.array([2]), expected)
        self.assert_numpy_array_equal(np.array([2]) * td, expected)
        self.assertRaises(TypeError, lambda: td * other)
        self.assertRaises(TypeError, lambda: other * td)

        self.assert_numpy_array_equal(td / other, np.array([1]))
        if LooseVersion(np.__version__) >= '1.8':
            self.assert_numpy_array_equal(other / td, np.array([1]))

        # timedelta, datetime
        other = pd.to_datetime(['2000-01-01']).values
        expected = pd.to_datetime(['2000-01-02']).values
        self.assert_numpy_array_equal(td + other, expected)
        if LooseVersion(np.__version__) >= '1.8':
            self.assert_numpy_array_equal(other + td, expected)

        expected = pd.to_datetime(['1999-12-31']).values
        self.assert_numpy_array_equal(-td + other, expected)
        if LooseVersion(np.__version__) >= '1.8':
            self.assert_numpy_array_equal(other - td, expected)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号