def test_alex(self):
class_index = 0
image_index = 0
total_count = 0.0
accept_sum = 0
actual = []
predict = []
for filename in filenames:
#query-feature
X=self.read_imagelist(filelist_path + filename + extension)
test_num=np.shape(X)[0]
out = self.forward_all(data=X)
predicts=out[self.outputs[0]]
predicts=np.reshape(predicts,(test_num,10))
confusion_array = np.zeros((class_size), dtype = np.int)
for i in range(test_num):
actual.append(class_index)
for j in range(class_size):
if np.max(predicts[i]) == predicts[i][j]:
confusion_array[j] += 1
predict.append(j)
image_index += 1
#print(confusion_array)
total_count += test_num
accept_sum += confusion_array[class_index]
class_index += 1
print 'total:%d' % (round(total_count))
print 'accept:%d' % (accept_sum)
print 'reject:%d' % (round(total_count) - accept_sum)
print 'accuray:%.4f' % (accept_sum / total_count)
#conf_mat = confusion_matrix(actual,predict)
#print(conf_mat)
#actual = np.array(actual)
#predict = np.array(predict)
#y_actual = pd.Series(actual, name='Actual')
#y_predict = pd.Series(predict, name='Predicted')
#df_confusion = pd.crosstab(y_actual,y_predict, rownames=['Actual'], colnames=['Predicted'], margins=True)
#print(df_confusion)
#plot_confusion_matrix(df_confusion)
return (accept_sum / total_count)
#process a text file
评论列表
文章目录