def printReport(self, printConfusionMatrix, printModelParameters):
# Print the metric determined in the previous function.
print("\nModel Report")
#Outpute the parameters used for modeling
if printModelParameters:
print('\nModel being built with the following parameters:')
print(self.alg.get_params())
if printConfusionMatrix:
for key,data in self.dp.items():
if key!='predict':
print("\nConfusion Matrix for %s data:"%key)
print(pd.crosstab(
data[self.datablock.target],
self.predictions_class[key])
)
print('Note: rows - actual; col - predicted')
print("\nScoring Metric:")
for key,data in self.dp.items():
if key!='predict':
name = '%s_%s'%(self.scoring_metric,key)
print("\t%s (%s): %s" %
(
self.scoring_metric,
key,
"{0:.3%}".format(self.classification_output[name])
)
)
print("\nCV Score for Scoring Metric (%s):"%self.scoring_metric)
print("\tMean - %f | Std - %f" % (
self.classification_output['CVScore_mean'],
self.classification_output['CVScore_std'])
)
if self.additional_display_metrics:
print("\nAdditional Scoring Metrics:")
for metric in self.additional_display_metrics:
for key,data in self.dp.items():
if key!='predict':
name = '%s_%s'%(metric,key)
print("\t%s (%s): %s" % (
metric,
key,
"{0:.3%}".format(
self.classification_output[name])
)
)
评论列表
文章目录