def __iter__(self, gen_type='train', batch_size=None, shuffle_block=False, random_sample=False, split_fields=False,
on_disk=True, squeeze_output=False, **kwargs):
gen_type = gen_type.lower()
if on_disk:
print('on disk...')
for hdf_X, hdf_y in self._files_iter_(gen_type=gen_type, shuffle_block=shuffle_block):
# num_of_lines = pd.HDFStore(hdf_y, mode='r').get_storer('fixed').shape[0]
X_all = pd.read_hdf(hdf_X, mode='r').as_matrix()
y_all = pd.read_hdf(hdf_y, mode='r').as_matrix()
gen = self.generator(X_all, y_all, batch_size, shuffle=random_sample)
for X, y in gen:
if split_fields:
X = np.split(X, self.max_length, axis=1)
for i in range(self.max_length):
X[i] -= self.feat_min[i]
if squeeze_output:
y = y.squeeze()
yield X, y
else:
print('not implemented')
评论列表
文章目录