def adjustments_from_deltas_no_sids(dense_dates,
sparse_dates,
column_idx,
column_name,
asset_idx,
deltas):
"""Collect all the adjustments that occur in a dataset that does not
have a sid column.
Parameters
----------
dense_dates : pd.DatetimeIndex
The dates requested by the loader.
sparse_dates : pd.DatetimeIndex
The dates that were in the raw data.
column_idx : int
The index of the column in the dataset.
column_name : str
The name of the column to compute deltas for.
asset_idx : pd.Series[int -> int]
The mapping of sids to their index in the output.
deltas : pd.DataFrame
The overwrites that should be applied to the dataset.
Returns
-------
adjustments : dict[idx -> Float64Overwrite]
The adjustments dictionary to feed to the adjusted array.
"""
ad_series = deltas[AD_FIELD_NAME]
idx = 0, len(asset_idx) - 1
return {
dense_dates.get_loc(kd): overwrite_from_dates(
ad_series.loc[kd],
dense_dates,
sparse_dates,
idx,
v,
) for kd, v in deltas[column_name].iteritems()
}
评论列表
文章目录