def fit_single_subject(subject=4):
df = pd.read_pickle('data.pkl')
print('Fitting model for subject {}'.format(subject))
df_s = df.loc[subject]
cues = (0, 1, 2)
for cue in cues:
ml = ML(df_s[df_s['cue']==cue])
r = ml.ml_estimation()
H_inv = r.hess_inv.todense()
print('\t cue:{:d}'.format(cue))
print('\t\tr:\n\t\t\t{}\n'.format(r.x))
print('\tInverse of Hessian:\n{}\n'.format(H_inv))
globals().update(locals())
评论列表
文章目录