def predict_tf_all(path = None):
result_list = []
p = m_Pool(31)
result_list = p.map(predict_tf_once,range(1,32))
p.close()
p.join()
print 'writing...'
result_df = pd.DataFrame(index = range(1))
for day,result in result_list:
day_s = str(day)
if len(day_s)<=1:
day_s = '0'+day_s
result_df['201610'+day_s] = result
result_df = result_df.T
result_df.columns = ['predict_power_consumption']
if path == None:
date = str(pd.Timestamp(time.ctime())).replace(' ','_').replace(':','_')
path = './result/'+date+'.csv'
result_df.to_csv(path,index_label='predict_date')
l = map(lambda day:pd.DataFrame.from_csv('./result/predict_part/%d.csv'%day),range(1,32))
t = pd.concat(l)
t.to_csv('./result/predict_part/'+date+'.csv')
评论列表
文章目录