def min_data(self):
sql_data = "select * FROM s_stock_runtime WHERE dateline =20160607 and s_code='sz000048' "
tmpdf = pandas.read_sql(sql_data, self.mysql.db)
pandas.set_option('display.width', 400)
# ???????period_type??????'W'??'M'????'Q'?????'5min'?12??'12D'
period_type = 'W'
#????
# ??date????index
tmpdf.set_index('date_str', inplace=True)
period_stock_data = tmpdf.resample('1Min', how='last')
#period_stock_data =
#print len(period_stock_data)
#print period_stock_data['B_1_price'].sum()
period_stock_data['MA_1'] = pandas.rolling_mean(period_stock_data['B_1_price'], 1)
#period_stock_data = tmpdf.resample('5Min', how='last')
print period_stock_data
sys.exit()
df = pandas.DataFrame(columns=('k', 'v'))
data = {}
j = 0
for i in range(len(tmpdf)):
#print tmpdf.iloc[i]
_min = tmpdf.iloc[i].min_sec
#print _min
if _min > 150000 and '150000' in data.keys():
continue
_min = str(_min)
_min = _min[0:-2]
#print _min
# sys.exit()
#[0:-2]
_min_str = "%s00" % _min
#data[_min_str] =
if _min_str not in data.keys():
#data = {'k': _min_str, 'v': tmpdf.iloc[i].B_1_price}
j += 1
data[_min_str] = {'v': tmpdf.iloc[i].B_1_price}
df.loc[j] = {'k': _min_str, 'v': tmpdf.iloc[i].B_1_price}
#j += 1
#data.append(_v)
#sys.exit()
print df
#print tmpdf
评论列表
文章目录