def load_submission(self, submission_file):
loc_submission = pd.read_csv(submission_file, header=None)
build_proc_sub = loc_submission[0].str.split(' ').values.tolist()
assert len(build_proc_sub[0]) == self.n_classes + len(self.submission_columns)
proc_sub = pd.DataFrame.from_records(build_proc_sub, columns=[self.submission_columns + list(range(self.n_classes))])
if self.subset is not None:
if type(proc_sub['frame_id'].values[0]) is np.ndarray:
mask = [True if x[0] in self.subset else False for x in proc_sub['frame_id'].values]
else:
# old pandas version
mask = [True if x in self.subset else False for x in proc_sub['frame_id'].values]
proc_sub = proc_sub[mask]
assert np.any(np.array(mask))
num_proc_sub = proc_sub.apply(pd.to_numeric, errors='ignore')
grouped_by_vid = num_proc_sub
self.submission = grouped_by_vid
评论列表
文章目录