def get_action_feat(start_time, end_time,action_data):
actions=action_data[(action_data['time']>=start_time)&(action_data['time']<=end_time)]
#actions = get_actions(start_time, end_time)
#actions = actions[actions['cate'] == 8]
actions = actions[['user_id', 'sku_id', 'type']]
df = pd.get_dummies(actions['type'], prefix='%s-%s-action' % (start_time, end_time))
actions = pd.concat([actions, df], axis=1) # type: pd.DataFrame
actions = actions.groupby(['user_id', 'sku_id'], as_index=False).sum()
actions.fillna(0,inplace=True)
name='%s-%s-action' % (start_time, end_time)
actions[name+'_1256']=actions[name+'_1']+actions[name+'_2']+actions[name+'_5']+actions[name+'_6']
actions[name+'_1256_d_4']=actions[name+'_4']/actions[name+'_1256']
del actions['type']
# action_fea_file = 'action_fea_' + STARTdt_str + 'to' + ENDdt_str + '.csv'
# action_fea.to_csv(FilePath + action_fea_file, index=False)
return actions
#????????????????????
评论列表
文章目录