def get_input_data_mask(self, input_data):
''' Boolean list of missing/not missing values:
True => missing
False => not missing
'''
trace_data, temp_data = input_data
dts = []
mask = []
if trace_data.empty or temp_data.empty:
return pd.Series(mask)
for (start, energy), (p, group) in zip(
trace_data.iteritems(),
temp_data.groupby(level="period")):
temps = group.copy()
temps.index = temps.index.droplevel()
daily_temps = temps.resample('D').apply(np.mean)[0]
for i, tempF in daily_temps.iteritems():
dts.append(i)
mask.append(pd.isnull(energy) or pd.isnull(tempF))
return pd.Series(mask, index=dts)
评论列表
文章目录