def user_info_m_p(df):
date2 = df[record_date].map(lambda x: str2time(x)).max()
date1 = datetime.datetime(date2.year, date2.month, 1).date()
grouped = DataView(df).filter_by_record_date2(date1, date2)[[user_id, 'month', power_consumption]].groupby([user_id, 'month'], as_index=False)
user_power_mean_m = grouped.mean()
user_power_median_m = grouped.median()
user_power_var_m = grouped.var()
user_power_max_m = grouped.max()
user_power_min_m = grouped.min()
user_power_mean_m = user_power_mean_m.rename(columns={power_consumption: 'user_power_mean_m_p'})
user_power_median_m = user_power_median_m.rename(columns={power_consumption: 'user_power_median_m_p'})
user_power_var_m = user_power_var_m.rename(columns={power_consumption: 'user_power_var_m_p'})
user_power_max_m = user_power_max_m.rename(columns={power_consumption: 'user_power_max_m_p'})
user_power_min_m = user_power_min_m.rename(columns={power_consumption: 'user_power_min_m_p'})
return pd.merge(user_power_mean_m, user_power_median_m).merge(user_power_var_m).\
merge(user_power_max_m).merge(user_power_min_m).drop('month', axis=1)
# ??????????????????????????????
评论列表
文章目录