def rise_rate(df):
date1_2 = df[record_date].map(lambda x: str2time(x)).max()
date1_1 = datetime.datetime(date1_2.year, date1_2.month, 1).date()
grouped1 = DataView(df).filter_by_record_date2(date1_1, date1_2)[[user_id, power_consumption]].groupby([user_id], as_index=False).mean()
from dateutil.relativedelta import relativedelta
date2_1 = date1_1 - relativedelta(months=+1)
date2_2 = date1_2 - relativedelta(months=+1)
grouped2 = DataView(df).filter_by_record_date2(date2_1, date2_2)[[user_id, power_consumption]].groupby([user_id], as_index=False).mean()
print(date1_1,date1_2, date2_1, date2_2)
print(grouped1)
print(grouped2)
user_rise_rate = pd.Series(map(lambda x, y: float(x - y) / y, grouped1[power_consumption], grouped2[power_consumption]))
user_rise_rate.name = 'user_rise_rate'
return grouped1[[user_id]].join(user_rise_rate)
# ?????
评论列表
文章目录